Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 185
1.
RSC Adv ; 14(19): 13100-13128, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38655462

Epoxides are oxygen containing heterocycles which are significantly employed as crucial intermediates in various organic transformations. They are considered highly reactive three-membered heterocycles due to ring strain and they undergo epoxide ring opening reactions with diverse range of nucleophiles. Epoxide ring-opening reactions have gained prominence as flexible and effective means to obtain various functionalized molecules. These reactions have garnered substantial attention in organic synthesis, driven by the need to comprehend the synthesis of biologically and structurally important organic compounds. They have also found applications in the synthesis of complex natural products. In this review article, we have summarized the implementation of epoxide ring opening reactions in the synthesis of alkaloids and terpenoids based natural products reported within the last decade (2014-2023).

2.
RSC Adv ; 14(16): 11169-11184, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38590348

The structural, electronic, mechanical, and optical characteristics of barium-based halide perovskite Ba3SbI3 under the influence of pressures ranging from 0 to 10 GPa have been analyzed using first-principles calculations for the first time. The new perovskite Ba3SbI3 material was shown to be a direct band gap semiconductor at 0 GPa, but the band gap diminished when the applied pressure increased from 0 to 10 GPa. So the Ba3SbI3 material undergoes a transition from semiconductor to metallic due to high pressure at 10 GPa. The Ba3SbI3 material also exhibits an increase in optical absorption and conductivity with applied pressure due to the change in band gap, which is more suitable for solar absorbers, surgical instruments, and optoelectronic devices. The charge density maps confirm the presence of both ionic and covalent bonding characteristics. Exploration into the mechanical characteristics indicates that the Ba3SbI3 perovskite is mechanically stable. Additionally, the Ba3SbI3 compound becomes strongly anisotropic at high pressure. The insightful results of our simulations will all be helpful for the experimental structure of a new effective Ba3SbI3-based inorganic perovskite solar cell in the near future.

3.
Mol Biotechnol ; 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38502429

Prostate cancer incidences are rising worldwide at an alarming rate. Drug resistance and relapse are two major challenges in the treatment of prostate cancer. Therefore, new multimodal, safe, and effective therapeutic agents are urgently required which could effectively mitigate the menace of tumor recurrence and chemo-resistance. Plant-derived products are increasingly being utilized due to their antioxidant, antibacterial, and anti-tumor potential. In the current study, 3-acetyl-11-keto-ß-boswellic acid, a triterpenoid isolated from plant Boswellia, was utilized to ascertain its chemotherapeutic potential against human prostate cancer cells. Various in vitro assays including cell viability, nuclear staining, mitochondria potential, reactive oxygen species (ROS) generation, and quantification of apoptosis, were performed for the evaluation of the cytotoxic potential of AKBA. We observed that AKBA (10-50 µM) dose-dependently suppressed cell proliferation and caused programmed cell death in PC3 cells via both intrinsic and extrinsic pathway. Intriguingly, AKBA was also found to chemosensitize PC3 cells in synergistic combination with doxorubicin. To the best of our knowledge, this is the first study to document the synergistic chemosensitizing impact of AKBA when combined with doxorubicin in prostate cancer cells.This showcases the potential of AKBA in combinatorial therapy or adjuvant therapy for the management of prostate cancer. In sum, our results suggested that AKBA is a promising drug-like molecule against prostate cancer. Our investigation introduces a novel perspective, elucidating a previously unexplored dimension, and uncovering a compelling chemosensitizing phenomenon along with a strong synergistic effect arising from the concurrent application of these two agents.

4.
RSC Adv ; 14(14): 9805-9818, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38528927

Lead-free inorganic Ge-based perovskites GaGeX3 (X = Cl, Br, and I) are promising candidates for solar cell applications due to their structural, mechanical, electrical, and optical properties. In this work, we performed density functional theory (DFT) calculations using the CASTEP module to investigate these properties in detail. We found that the lattice parameters and cell volumes increase with the size of the halogen atoms, and that all the compounds are stable and ductile. GaGeBr3 has the highest ductility, machinability, and lowest hardness, while GaGeCl3 has the highest anisotropy. The band gap values, calculated using the GGA-PBE and HSE06 functionals, show a direct band gap at the R-R point, ranging from 0.779 eV and 1.632 eV for GaGeCl3 to 0.330 eV and 1.140 eV for GaGeI3. The optical properties, such as absorption coefficient, conductivity, reflectivity, refractive index, extinction coefficient, and dielectric function, are also computed and discussed. We observed that the optical properties improve with the redshift of the band gap as Cl is replaced by Br and I. GaGeI3 has the highest dielectric constant, indicating the lowest recombination rate of electron-hole pairs. Our results suggest that GaGeX3 (X = Cl, Br, and I) can be used as effective and non-toxic materials for multijunction solar cells and other semiconductor devices.

5.
PLoS One ; 19(3): e0299364, 2024.
Article En | MEDLINE | ID: mdl-38551992

The purpose of this study is to examine the possibility of GO to be used as an adsorbent for five novel potentially hazardous azo-dyes for their removal from aqueous solution. Adsorption characteristics of GO for azo-dyes removal were investigated by means of experimental and computational DFT as well as Monte Carlo approaches. Experimental studies include the effect of adsorbent dose, contact time, and initial concentration, while computational investigation involves DFT and Monte Carlo (MC) simulations. Through DFT studies geometric, electronic, and thermodynamic parameters were explored and possible mechanism of interactions and adsorption energies by predicted through MC by searching lowest possible adsorption complexes. Experimental data were evaluated by Langmuir models in order to describe the equilibrium isotherms. Equilibrium data fitted well to the Langmuir model. Thermodynamic parameters i.e., free energy change, enthalpy change, and entropy change revealed that the removal of azo-dyes by adsorption on the surface of GO molecular sieves was spontaneous. Nature of the process was found to be physiosorption involving non-covalent interaction. The study unveiled that GO can be used as an efficient adsorbent material for the adsorption of azo-dyes from aqueous solution.


Azo Compounds , Water Pollutants, Chemical , Adsorption , Kinetics , Thermodynamics , Indicators and Reagents , Water , Coloring Agents , Hydrogen-Ion Concentration
6.
ACS Omega ; 9(9): 10680-10693, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38463271

The large number of active sites in the layered structure of δ-MnO2 with considerable interlayer spacing makes it an excellent candidate for ion storage. Unfortunately, the δ-MnO2-based electrode has not yet attained the exceptional storage potential that it should demonstrate because of disappointing structural deterioration during periodic charging and discharging. Here, we represent that stable Na ion storage in δ-MnO2 may be triggered by the preintercalation of K ions and water molecules. Furthermore, the sluggish reaction kinetics and poor electrical conductivity of preintercalated δ-MnO2 layers are overcome by the incorporation of h-WO3 in the preintercalated δ-MnO2 to form novel composite electrodes. The composites contain mixed valence metals, which provide a great number of active sites along with improved redox activity, while maintaining a fast ion transfer efficiency to enhance the pseudocapacitance performance. Based on our research, the composite prepared from preintercalated δ-MnO2 with 5 wt % h-WO3 provides a specific capacitance of up to 363.8 F g-1 at a current density of 1.5 A g-1 and an improved energy density (32.3 W h kg-1) along with an ∼14% increase in capacity upon cycling up to 5000 cycles. Hence, the interaction between the preintercalated δ-MnO2 and h-WO3 nanorods results in satisfactory energy storage performance due to the defect-rich structure, high conductivity, superior stability, and lower charge transfer resistance. This research has the potential to pave the way for a new class of hybrid supercapacitors that could fill the energy gap between chemical batteries and ideal capacitors.

7.
RSC Adv ; 14(12): 8409-8433, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38476178

Yolk-shell microgels and their hybrids have attained great importance in modern-day research owing to their captivating features and potential uses. This manuscript provides the strategies for preparation, classification, properties and current applications of yolk-shell microgels and their hybrids. Some of the yolk-shell microgels and their hybrids are identified as smart polymer yolk-shell microgels and smart hybrid microgels, respectively, as they react to changes in particular environmental stimuli such as pH, temperature and ionic strength of the medium. This unique behavior makes them a perfect candidate for utilization in drug delivery, selective catalysis, adsorption of metal ions, nanoreactors and many other fields. This review demonstrates the contemporary progress along with suggestions and future perspectives for further research in this specific field.

8.
Int J Biol Macromol ; 261(Pt 2): 129962, 2024 Mar.
Article En | MEDLINE | ID: mdl-38316322

In this work, novel monoclinic tungsten oxide (WO3)-encapsulated phosphate-rich porous sodium alginate (PASA) microspherical hydrogel beads were prepared for efficient U(VI) capture. These macroporous and hollow beads were systematically characterized through XRD, FTIR, EDX-mapping, and SEM-EDS techniques. The O and P atoms in the PO and monoclinic WO3 offered inner-spherical complexation with U(VI). The in situ growth of WO3 played a significant role inside the phosphate-rich biopolymeric network to improve its chemical stability, specific surface area, adsorption capacity, and sorption rate. The phytic acid (PA) served for heteroatom doping and crosslinking. The encapsulated WO3 mass ratio was optimized in different composites, and WO3/PASA3 (the microspherical beads with a mass ratio of 30.0 % w/w) exhibited remarkable maximum sorption capacity qm (336.42 mg/g) computed through the best-fit Langmuir model (R2 ≈ 0.99) and rapid sorption equilibrium, teq (150 min). The isothermal sorption studies were conducted at different temperatures (298, 303, and 308 K) and thermodynamic parameters concluded that the process of U(VI) sorption using WO3/PASA3 is endothermic and feasible having ΔHo (8.19 kJ/mol), ΔGo (-20.75, -21.38, and - 21.86 kJ/mol) and proceeds with a minute increase in randomness ΔSo (0.09 kJ/mol.K). Tungsten oxide (WO3)-encapsulated phosphate-rich porous microspherical beads could be promising material for uranium removal.


Alginates , Oxides , Tungsten , Uranium , Alginates/chemistry , Adsorption , Phosphates , Porosity , Thermodynamics , Kinetics , Uranium/chemistry , Hydrogen-Ion Concentration
9.
Int J Biol Macromol ; 260(Pt 1): 129409, 2024 Mar.
Article En | MEDLINE | ID: mdl-38224801

Chitosan based microgels have gained great attention because of their chemical stability, biocompatibility, easy functionalization and potential uses in numerous fields. Production, properties, characterization and applications of chitosan based microgels have been systematically reviewed in this article. Some of these systems exhibit responsive behavior towards external stimuli like pH, light, temperature, glucose, etc. in terms of swelling/deswelling in an aqueous medium depending upon the functionalities present in the network which makes them a potential candidate for various applications in the fields of biomedicine, agriculture, catalysis, sensing and nanotechnology. Current research development and critical overview in this field accompanying by future possibilities is presented. The discussion is concluded with recommended possible future works for further progress in this field.


Chitosan , Microgels , Microgels/chemistry , Chitosan/chemistry , Gels/chemistry , Catalysis , Nanotechnology
10.
RSC Adv ; 14(5): 2929-2946, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38239436

The carbazole scaffold is a significant entity in organic compounds due to its variety of biological and synthetic applications. Traditionally, carbazole skeletons have been synthesized either via the Grabe-Ullman method, Clemo-Perkin method or Tauber method. With the passage of time, these methods have been modified and explored to accomplish the synthesis of target compounds. These methods include hydroarylations, C-H activations, annulations and cyclization reactions mediated by a variety of catalysts to construct carbazole-based compounds. This brief review article intends to provide recent updates on important methodological developments reported for the synthesis of carbazole nuclei covering 2019-2023.

11.
RSC Adv ; 14(3): 1924-1938, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-38192318

The remarkable performance of copper indium gallium selenide (CIGS)-based double heterojunction (DH) photovoltaic cells is presented in this work. To increase all photovoltaic performance parameters, in this investigation, a novel solar cell structure (FTO/SnS2/CIGS/Sb2S3/Ni) is explored by utilizing the SCAPS-1D simulation software. Thicknesses of the buffer, absorber and back surface field (BSF) layers, acceptor density, defect density, capacitance-voltage (C-V), interface defect density, rates of generation and recombination, operating temperature, current density, and quantum efficiency have been investigated for the proposed solar devices with and without BSF. The presence of the BSF layer significantly influences the device's performance parameters including short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), and power conversion efficiency (PCE). After optimization, the simulation results of a conventional CIGS cell (FTO/SnS2/CIGS/Ni) have shown a PCE of 22.14% with Voc of 0.91 V, Jsc of 28.21 mA cm-2, and FF of 86.31. Conversely, the PCE is improved to 31.15% with Voc of 1.08 V, Jsc of 33.75 mA cm-2, and FF of 88.50 by introducing the Sb2S3 BSF in the structure of FTO/SnS2/CIGS/Sb2S3/Ni. These findings of the proposed CIGS-based double heterojunction (DH) solar cells offer an innovative method for realization of high-efficiency solar cells that are more promising than the previously reported traditional designs.

12.
Heliyon ; 10(1): e23416, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38170008

The exploitation of natural products and their analogues in the field of pharmacology has been regarded as of great importance. It can be attributed to the fact that these scaffolds exhibit diverse chemical properties, distinct biological activities and zenith specificity in their biochemical processes, enabling them to act as favorable structures for lead compounds. The synthesis of natural products has been a crafty and hard-to-achieve task. Steglich esterification reaction has played a significant role in that area. It is a mild and efficient technique for constructing ester linkages. This technique involves the establishment of ester moiety via a carbodiimide-based condensation of a carboxylic acid with an alcohol, thiol or an amine catalyzed by dimethyl aminopyridine (DMAP). Specifically, labile reagents with multiple reactive sites are esterified efficiently with the classical and modified Steglich esterification conditions, which accounts for their synthetic utility. This review encloses the performance of the Steglich esterification reaction in forging the ester linkage for executing the total synthesis of natural products and their derivatives since 2018.

13.
Article En | MEDLINE | ID: mdl-38231063

BACKGROUND: Oxidative stress refers to non-homeostatic elevation within intracellular reactive oxygen species (ROS) levels and is associated with several neuro-related pathological conditions. Diclofenac is a commonly prescribed non-steroidal anti-inflammatory drug (NSAID) for treating aches and pain by reducing inflammation. Diclofenac is also associated with the induction of apoptotic cell death by altering the homeostatic balance within mitochondria. In the present report, the neuroprotective effects of BNC formulation constituted by Bacopa monnieri leaves, Nigella sativa and Curcuma longa rhizome seeds were investigated. METHODS: The synthesized formulation was characterized using FT-IR and LC-MS along with organoleptic evaluation. Thereafter neuroprotective efficacy of BNC formulation was subsequently investigated against Diclofenac-induced oxidative stress in SH-SY5Y cells. The cells were pretreated with synthesized formulation and subsequently evaluated for amelioration in Diclofenac-induced cytotoxicity, and ROS augmentation. The neuroprotective effect of synthesized formulation was further explored by evaluating the changes in nuclear morphology, and apoptosis alleviation with concomitant regulatory effects on caspase-3 and -9 activation. RESULTS: Diclofenac was found to be considerably cytotoxic against human neuroblastoma SHSY5Y cells. Intriguingly, Diclofenac-mediated toxicity was reduced significantly in SH-SY5Y cells pretreated with BNC formulation. Augmented ROS levels within Diclofenac-treated SHSY5Y cells were also reduced in the BNC formulation pretreated SH-SY5Y cells. Furthermore, BNC formulation pretreated SH-SY5Y cells also exhibited reduced dissipation of mitochondrial membrane potential, caspase-3 and -9, along with apoptosis after Diclofenac treatment. CONCLUSION: These findings indicated that, indeed, Diclofenac induces considerable ROSmediated apoptosis in SH-SY5Y cells, which further intriguingly ameliorated Diclofenacmediated cytotoxic effects on SH-SY5Y cells. This manuscript further collected information about available National and International patents published or granted in preparation of and thereof applications against motor and non-motor brain dysfunctions.

14.
J Mol Model ; 30(2): 43, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38236500

CONTEXT: This study employs a data-guided approach to evaluate zeolites for hydrogen storage, utilizing molecular simulations. The development of efficient and practical hydrogen storage materials is crucial for advancing clean energy technologies. Zeolites have shown promise as potential candidates due to their unique porous structure and tunable properties. However, the selection and design of suitable zeolites for hydrogen storage remain challenging. Therefore, this work aims to address this materials science question by utilizing molecular simulations and data-guided approaches to evaluate zeolites' performance for hydrogen storage. The results obtained from this study provide valuable insights into the evaluation of zeolites for hydrogen storage. Through molecular simulations, we analyze the adsorption behavior of hydrogen molecules in various zeolite structures. The performance of different zeolite frameworks in terms of hydrogen storage capacity, adsorption energy, and diffusion properties is assessed. Linde type A zeolite (LTA) had the highest capacity with a hydrogen capacity of 4.8wt% out of the 233 investigated zeolites. Furthermore, we investigate the influence of different factors such as mass (M), density (D), helium void fraction (HVF), accessible pore volume (APV), gravimetric surface area (GSA), and largest overall cavity diameter (Di) on the hydrogen storage performance of zeolites. The results show that Di, D, and M have a negative effect on the percentage weight capacity, while GSA and VSA have the highest positive contribution to the percentage weight. This study, therefore, provides new insights into the factors that affect their hydrogen storage capacity by exhibiting the importance of considering multiple factors when evaluating the performance of zeolites and demonstrates the potential of combining different computational methods to provide a more comprehensive understanding of materials. The current study contributes to the understanding of zeolite-based materials for hydrogen storage applications, aiding in the development of more efficient and practical hydrogen storage systems. METHODS: Computational techniques were employed to investigate the hydrogen storage properties of zeolites. Molecular simulations were performed using classical force fields and molecular dynamics methods. The calculations were carried out at a force field level of theory with the GGA functional. To accurately capture the thermodynamics and kinetics of hydrogen adsorption, enhanced sampling techniques such as Monte Carlo simulations and molecular dynamics with metadynamics were utilized. We employed Grand Canonical Monte Carlo (GCMC) simulations to model hydrogen adsorption in zeolite structures for hydrogen storage. Our approach involved performing a substantial number of Monte Carlo steps (10,000) to ensure system equilibration and precise results. We defined a cutoff distance for particle interactions as 12.5 Ǻ and considered 0.000e framework charge per cell and 0.000e sorbate charge in energy calculations. The choice of an appropriate simulation cell size (50 × 50 × 50) Ǻ was crucial, mirroring real-world conditions. We specified lower and upper fugacity values (1 to 10 atm) to capture the range of gas pressures in the simulations. These methodical steps collectively enabled us to accurately model hydrogen adsorption within zeolites, forming the core of our hydrogen storage evaluation. In this research, we utilized DFT calculations to thoroughly investigate the interactions between zeolites and hydrogen. We employed pseudopotentials to describe electron behavior in zeolite systems, choosing them in line with DFT norms and basis set compatibility. Our simulation cell design replicated zeolite periodicity and eliminated boundary effects. Pre-geometry optimization was performed with HyperChem29, ensuring stable conformations with strict convergence criteria. We utilized 6-31 + G(d) and LanL2DZ basis sets for light and heavy atoms, aligning with field standards for computational efficiency and precision. A machine learning algorithm was used to rank the importance of various structural features such as mass (M), density (D), helium void fraction (HVF), accessible pore volume (APV), gravimetric surface area (GSA), and largest overall cavity diameter (Di) and how they affect the capacity of the zeolites. Machine learning analysis was performed with the Scikit-learn library, an open-source Python tool. We employed a range of machine learning models, including SVMs, random forests, and neural networks, primarily for data analysis and feature extraction. Pearson correlation analysis, a classical statistical technique, was used to evaluate linear relationships between variables and assess the strength and direction of these relationships. It served as a complementary tool to understand the interplay of variables in our dataset, distinguishing it from machine learning algorithms. Further quantum chemical calculations were also performed to calculate the adsorption energy, global reactivity electronic descriptors, and natural bond orbital analysis in order to provide insights into the interaction of the zeolites with hydrogen. The simulations and data analysis were performed using BIOVIA material studio software, Gaussian, and Origin Pro software.

15.
Molecules ; 29(2)2024 Jan 09.
Article En | MEDLINE | ID: mdl-38257232

Additive manufacturing (AM), commonly referred to as 3D printing, has revolutionized the manufacturing landscape by enabling the intricate layer-by-layer construction of three-dimensional objects. In contrast to traditional methods relying on molds and tools, AM provides the flexibility to fabricate diverse components directly from digital models without the need for physical alterations to machinery. Four-dimensional printing is a revolutionary extension of 3D printing that introduces the dimension of time, enabling dynamic transformations in printed structures over predetermined periods. This comprehensive review focuses on polymeric materials in 3D printing, exploring their versatile processing capabilities, environmental adaptability, and applications across thermoplastics, thermosetting materials, elastomers, polymer composites, shape memory polymers (SMPs), including liquid crystal elastomer (LCE), and self-healing polymers for 4D printing. This review also examines recent advancements in microvascular and encapsulation self-healing mechanisms, explores the potential of supramolecular polymers, and highlights the latest progress in hybrid printing using polymer-metal and polymer-ceramic composites. Finally, this paper offers insights into potential challenges faced in the additive manufacturing of polymer composites and suggests avenues for future research in this dynamic and rapidly evolving field.

16.
J Comput Chem ; 45(10): 622-632, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38063457

Pyrazinamide, an antituberculosis but documented toxic drug, is subjected to computational investigation along with the metal complexes via a DFT approach to predict the structure-activity and structure-toxicity relationship. 6-31G(d,p) basis set was used for Zn, Ni, Mn, Fe, and Co, while the SDD basis set was applied to Cu, Cr, Cd, and Hg. Several reactivity parameters and charge distribution were calculated and the reactivity profile was estimated. The complexes were found to be soft and polarizable which could be responsible for their binding with bacterial targets to inhibit their growth. In contrast, pyrazinamide which is found to be hard among all is susceptible to being toxic. Moreover, the electronegative nature of the complexes can endow them with a better antibacterial effect. Since metal complexes have been found to be less toxic and more biologically interactive by computational methods, they can be employed as potent drugs for the cure of tuberculosis.


Coordination Complexes , Mercury , Pyrazinamide/pharmacology , Coordination Complexes/pharmacology , Anti-Bacterial Agents
17.
Fitoterapia ; 172: 105767, 2024 Jan.
Article En | MEDLINE | ID: mdl-38052334

ETHNOPHARMACOLOGICAL USES: Black cohosh, also known as Cimicifuga sp., is one of the most widely used ethnomedicine for the treatment of major health issues in women. Some reports show that Cimicifuga sp. exhibit anti-cancer, anti-viral, anti-microbial, anti-pyretic, and anti-inflammatory properties. PURPOSE OF THIS REVIEW: The objective of this comprehensive review is to furnish current and exhaustive knowledge pertaining to the pharmacological, phytochemical, and therapeutic properties of Cimicifuga sp. MATERIALS AND METHODS: In this review, all the available information was collected on Cimicifugasp. via computerized search using Google Scholar, PubMed, Research Gate, Sci-Hub, supplementary resources (books, government reports, and Ph.D. theses). RESULT: The phytochemical investigation on Cimicifuga sp. has shown phytoconstituents such as triterpenoid glycosides, phenylpropanoid, flavonoids, saponin, lignan, nitrogenous compounds, alkaloids, 4α-Methyl steroids and some other component like monoterpene lactones cimicifugolides A-C etc. Cimicifuga conveys a wide scope of research on in-vitro and in-vivo pharmacological potential, like anti-cancer, anti-microbial, anti-viral, anti-inflammatory, estrogenic, anti-oxidant, anti-neoplastic, anti-depressant, anti-Alzheimer, and anti-climacteric properties. CONCLUSION: This article discusses the medicinal and traditional histories of various Cimicifuga species. Because quality control and safety assessments of Cimicifuga species are currently lacking, only a limited portion of the plant may be used as medication. The majority of current research focuses on triterpene glycosides. Although there are a variety of additional molecules that may have novel biological functions, systematic investigations of these compounds are lacking. The Cimicifuga plant has to go through a lot of studies before it can be completely used in clinics as a viable medicinal contender.


Actaea , Cimicifuga , Female , Humans , Anti-Inflammatory Agents , Antiviral Agents , Ethnopharmacology , Glycosides , Molecular Structure , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
18.
RSC Adv ; 13(50): 35172-35208, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-38053693

With the ever-increasing scope of organocuprates, a well-established Gilman reagent has been considered as an unprecedented synthetic tool in modern organic chemistry. The broad research profile of the Gilman reagent (R2CuLi in THF or Et2O) is owing to its propensity to carry out three kinds of reactions, i.e., epoxide ring opening reactions, 1,4-conjugate addition reactions, and SN2 reactions in a regioselective manner. This review examines the applications of Gilman reagent in the total synthesis of both abundant and scarce natural products of remarkable synthetic pharmaceutical profile reported since 2011. The presented insights will be of a vital roadmap to general organic synthesis and it will contribute to the development of new natural products and their analogues in future drug discovery.

19.
Heliyon ; 9(12): e21571, 2023 Dec.
Article En | MEDLINE | ID: mdl-38076184

The utilization of thermally activated delayed fluorescence (TADF) materials in highly proficient organic light-emitting diodes (OLEDs) has attracted much attention. Based on TADF material TPA-QNX(CN)2, a series of three-dimensional donor-acceptor (D-A) triptycenes have been designed via structural modification of D-fragment. The influences of different D-fragments with various electron-donating strengths on the singlet-triplet energy gap (ΔEST), emission wavelength (λem), and electron/hole reorganization energy (λe/λh) are extensively studied by applying density functional theory (DFT) coupled with time-dependent density functional theory (TD-DFT). The computed results imply that as the electron-donating strength of the D-fragments increases, the ΔEST value decreases and λem is red-shifted for the molecules using the same acceptor units. Analogously, the 1CT‒3CT state splitting (ΔEST (CT)) is also decreased by enlarging the twist angle (ß) between the phenyl ring and alternative D-fragment. Therefore, efficient color tuning within a broad emission range (434-610 nm), as well as small ΔEST (CT) values (0.01-0.05 eV), has been accomplished by structural modification of the D-fragments. The greater electron-donating strength, the smaller ΔEST, and the smaller λh for PPXZ-QNX(CN)2 make it the best candidate among all the designed molecules.

20.
Molecules ; 28(24)2023 Dec 10.
Article En | MEDLINE | ID: mdl-38138522

The Petasis reaction, also called the Petasis Borono-Mannich reaction, is a multicomponent reaction that couples a carbonyl derivative, an amine and boronic acids to yield substituted amines. The reaction proceeds efficiently in the presence or absence of a specific catalyst and solvent. By employing this reaction, a diverse range of chiral derivatives can easily be obtained, including α-amino acids. A broad substrate scope, high yields, distinct functional group tolerance and the availability of diverse catalytic systems constitute key features of this reaction. In this review article, attention has been drawn toward the recently reported methodologies for executing the Petasis reaction to produce structurally simple to complex aryl/allyl amino scaffolds.

...